Kurt Schlacher, Andreas Kugi, Kurt Zehetleitner,
"Symbolic Methods for the Equivalence Problem for Systems for Implicit Ordinary Differential Equations"
, in Winkler Franz, Langer Ulrich: Proceedings Symbolic and Numerical Scientific Computation, 2nd Int. Conference, SNSC 01, Springer Verlag, Seite(n) 140-151, 9-2002, ISBN: 3-540-40554-2
Original Titel:
Symbolic Methods for the Equivalence Problem for Systems for Implicit Ordinary Differential Equations
This contribution deals with the equivalence problem for systems of implicit ordinary differential equations. Equivalence means that every solution of the original set of equations is a solution of a given normal form and vice versa. Since we describe this system as a submanifold in a suitable jet-space, we present some basics from differential and algebraic geometry and give a short introduction to jet-theory and its application to systems of differential equations. The main results of this contribution are two solutions for the equivalence problem where time derivatives of the input are admitted or not. Apart from the theoretical results we give a sketch for computer algebra based algroithms necessary to solve these problems efficiently.
Sprache der Kurzfassung:
Englisch
Veröffentlicher:
Springer Verlag
Seitenreferenz:
140-151
Erscheinungsmonat:
9
Erscheinungsjahr:
2002
ISBN:
3-540-40554-2
Anzahl der Seiten:
12
Notiz zur Publikation:
Schlacher K., Kugi A., Zehetleitner K.: Symbolic Methods for the Equivalence Problem for Systems for Implicit Ordinary Differential Equations In: Proceedings of the Conference Symbolic and Numeric Computation SNSC’01, Lecture Notes in Computer Science 2630, Springer Verlag, ISBN 3-540-40554-2, September 12-14 2001, Linz, pp. 140-151, 2002.