Siegfried Mariacher, Martina Ebner, José Hurst, Peter Szurman, Kai Januschowski,
"Implantation and testing of a novel episcleral pressure transducer: A new approach to telemetric intraocular pressure monitoring."
, in Experimental Eye Research, Seite(n) 84-90, 1-2018, ISSN: 0014-4835
Original Titel:
Implantation and testing of a novel episcleral pressure transducer: A new approach to telemetric intraocular pressure monitoring.
Sprache des Titels:
Englisch
Original Kurzfassung:
Measurement of intraocular pressure (IOP) is an essential tool in monitoring glaucoma. Single IOP assessments during clinical routine examinations represent punctual values and are not able to identify IOP fluctuations and spikes. Telemetric IOP measurements are able to monitor IOP during the day and night, and are location-independent. Six telemetric episcleral IOP sensors were investigated after minimally invasive subconjunctival implantation in 6 eyes of 6 New-Zealand-White rabbits. Three of the 4 edges of the implant were fixated intrasclerally with non-absorbable sutures. The sutures were stitched into the edges of the implants' silicone rubber encasements. Telemetric IOP measurements were validated 1 week, 4 weeks, 8 weeks, 12 weeks and 30 weeks after implantation. For each validation the anterior chamber was cannulated and connected to a height-adjustable water column. Different intracameral pressure levels (10-45 mmHg) were generated by height adjustment of the water column. Measurement reliability and concordance between telemetric and intracameral IOP was validated using Bland-Altman analysis. Overall comparison (10-45 mmHg) between telemetric and intracameral pressure revealed a standard deviation of ±1.0 mmHg. A comparison of pressure values in the range between 10 and 30 mmHg revealed a standard deviation of ±0.8 mmHg. Device deficiency was related to follow-up length: 4 weeks after implantation, 3 of the 6 sensors showed malfunction, with all sensors having failed 30 weeks after implantation.