Design Software for Microfluidics: Integrating Fluid Modeling with Design Objectives / Prof. Dr. Philip Brisk
Sprache des Titels:
Englisch
Original Kurzfassung:
Current design methodologies for microfluidic chips leave a lot to be desired, especially when compared to the highly customized software that has been available to semiconductor designers for decades. In particular, there is a disconnect between software used to design and physically lay out microfluidic chips, and fluid modeling software. Each modification to the design necessitates an update to the fluid model, but it is left to the ingenuity of the designers and modelers to make the necessary design modifications to eventually converge to a workable chip. Due to the ad-hoc nature of the design process, an unfavorably large number of design-fabricate-test cycles are required to produce a correctly operating prototype. There is an urgent need for software technologies that can reduce the costs associated with designing a new microfluidic chip, as well as time-to-market. This need can only be met by custom design software for microfluidic devices that integrates fluid modeling and is aware of the design objectives. This type of software can apply algorithms and other strategies from the domain of Computer Science to help microfluidic chip designers rapidly achieve design closure.
This talk will summarize two example projects where this approach has been successfully applied to the design of different types of microfluidic chips