International Symposium on Multiple-Valued Logic (ISMVL)
Sprache des Tagungstitel:
Englisch
Original Kurzfassung:
Quantum computation established itself as a promising emerging technology and, hence, attracted considerable attention in the domain of computer-aided design (CAD). However, quantum mechanical phenomena such as superposition, phase shifts, or entanglement lead to a logic model which poses serious challenges to the development of a proper design flow for quantum circuits. Consequently, researchers addressed synthesis of quantum circuits not as a single design step, but considered sub-tasks such as synthesis of Boolean components or synthesis of restricted subsets of quantum functionality. Generating a particularly desired quantum state is another of these sub-tasks. However, logic synthesis of quantum circuits accomplishing that has hardly been considered yet. In this work, we propose a generic method which automatically synthesizes a quantum circuit generating any desired quantum state from an initially given basis state. The proposed method allows for both, a theoretical determination of upper bounds as well as an experimental evaluation of the number of quantum gates needed for this important design step.